Bootstrapping SVM Active Learning by Incorporating Unlabelled Images for Image Retrieval
نویسندگان
چکیده
The performance of image retrieval with SVM active learning is known to be poor when started with few labelled images only. In this paper, the problem is solved by incorporating the unlabelled images into the bootstrapping of the learning process. In this work, the initial SVM classifier is trained with the few labelled images and the unlabelled images randomly selected from the image database. Both theoretical analysis and experimental results show that by incorporating unlabelled images in the bootstrapping, the efficiency of SVM active learning can be improved, and thus improves the overall retrieval performance.
منابع مشابه
Improving Relevance Feedback in Image Retrieval by Incorporating Unlabelled Images
In content-base image retrieval, relevance feedback (RF) schemes based on support vector machine (SVM) have been widely used to narrow the semantic gap between low-level visual features and high-level human perception. However, the performance of image retrieval with SVM active learning is known to be poor when the training data is insufficient. In this paper, the problem is solved by incorpora...
متن کاملNasullah Khalid Alham
Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them Support Vector Machines (SVMs) are used extensively due to their generalization properties. However, SVM training is notably a computationally intensive process especially when the training dataset is large. In this thesis distributed computing paradigms have...
متن کاملA Scalable Bootstrapping Framework for Auto-Annotation of Large Image Collections
Image annotation aims to assign semantic concepts to images based on their visual contents. It has received much attention recently as huge dynamic collections of images/videos become available on the Web. Most recent approaches employ supervised learning techniques, which have the limitation that a large set of labeled training samples is required for effective learning. This is both tedious a...
متن کاملImage retrieval with SVM active learning embedding Euclidean search
Image retrieval with relevance feedback suffers from the small sample problem. Recently, SVM active learning has been proposed to tackle this problem, showing promising results. However, a small but sufficient number of initially labelled samples are still required to ensure the subsequent active learning efficient and good retrieval performance. In the existing method, the user is asked to lab...
متن کاملSupport Vector Machine Concept-Dependent Active Learning for Image Retrieval
Relevance feedback is a critical component when designing image databases. With these databases it is difficult to specify queries directly and explicitly. Relevance feedback interactively learns a user’s desired output or query concept by asking the user whether certain proposed images are relevant or not. For a learning algorithm to be effective, it must learn a user’s query concept accuratel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003